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score vectors, which then induces a more refined partial order on the
alternative set. This result forms the basis of a decision aiding pro-
cedure which: (1) identifies the nondominated set of alternatives, a
set guaranteed to contain the most preferred alternative under mild
assumptions, (2) asks the decision maker to choose a most preferred
alternative from the nondominated set, and (3) if this choice cannot
be made, aggregates some, but not necessarily all, of the value scores
to strengthen the partial order on the alternative set, thus reducing
the size of the nondominated set and presumably enhancing alternative
selection. The potential value of this procedure is that it is
interactive, it can accommodate a variety of levels of online preference
feedback from the decision maker, and it does not necessarily require
that the value scores be completely aggregated.
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1. Introduction

j The issue addressed in this paper involves the problem of

selecting the k most preferred alternatives from a finite set

of alternatives, where the outcome which results from any

selected alternative is determined probabilistically and where

the problem is characterized by multiple, noncommensurate, an4

conflicting objectives. Specifically, let H - {"'l'**' TPI be

the finite set of all alternatives available to the decision-

maker, where k < P. The set of all possible outcomes of each of

the alternatives is A = {el,..., w.. Assume that N lowest

level objectives and Q attributes or objectives measures have

thbeen identified. Let x q(w m ) be the q attribute score if the

mth outcome has occured, and let x(wm) - (xl(wm),..., XQ(Wm)}.

Assume for each objective n, 1 < n < N, a value function vn has

been assessed that is isotone (monotonically nondecreasing) in

preference; that is, outcome m is preferred to outcome I with

respect to the nth objective iff (if and only if) vn [x(wm)] >

vn[x(wt)]. We remark it is commonly considered desirable that

each value score be associated with a single attribute which

is distinct from the attributes associated with the other objec-

tives, (Keeney and Raiffa, 1976; p. 223); that is, Q = N and

Vn [x(Wm)] = vn [Xn (m)]. We will not require this as an assump-
m m nN n

tion. Let v { VX(Wm)],..., VN[x(wm) J and V = {v m ,

m=l,..., MI. The finite set V is the set of all value score

vectors and for our purposes is essentially equivalent to the

1



outcome set 0. Since more is better with respect to value

scores, the relation on V considered throughout this paper

is: v'Rv iff v ' vn for all n1l,..., N. Each alternative

is equivalent to a probability mass function over 0 and

hence equivalently over V; i.e., T (i) = T (v ) is the prob-
p p

ability that the p alternative will result in value score

vector vm. All (subjective or objective) probabilities w (i)p

are assumed to have been determined.

We assume that there exists a scalar-valued function

U: V - R such that

u(x) = UIv(x)]

where u is a multiattribute utility function and where both u

and U are assumed to be unassessed. Furthermore, we assume

that an objectives hierarchy has been specified and that value

scores can be aggregated according to this objectives hierarchy.

For example, let vN-1 and vN be value scores associated with

two lowest level objectives which are both associated with a

single higher level objective. (The two lowest level objectives

might be "increase comfort" and "decrease noise", and the

higher level objective might be "improve aesthetics.") Then we

assume that there exist an aggregation function f: R2 - R1

and a utility function U such that

U(v I ,..., vN)

= U[vl,..., vNl, f(vNl, vN)].

These assumptions allow us to "move up" the objectives hierarchy

and ultimately assess a scalar-valued value function V such that

2
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FIGURE 1: Decision Tree Representation of the Static Choicemaking

Problem Under Risk with Vector-Valued Outcomes.
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u(x) = u[V(x)], if we so desire.

The multiattribute utility theory (MAUT) approach for

solving the problem of selecting the k most preferred alter-

natives is to assess a utility function u: V - R which has

the property that value score vector vm is preferred to value

score vector vL iff u(vm) > u(v. Alternatives can then be

compared on the basis of expected utility; i.e., wr is pre-

ferred to w iff

E u(v) '(M> E u(v) rWvM.
veV veV

Since the expected utility generated by an alternative is a

scalar, such a procedure linearly orders the alternatives and

allows for the k most preferred alternatives to be easily

identified.

Properly assessing the utility function, however, can be

both time consuming and stressful for the decisionmaker. A

choicemaking approach presented in (White and Sage, 1980), for

the special case where each alternative is associated with a

single outcome with probability one (i.e., the riskless case),

has been developed to avoid, or reduce to the extent possible,

the difficult and possibly unnecessary task of aggregating value

scores. In this paper, we extend the approach presented in

(White and Sage, 1980) to the case where outcomes of alternatives

are described probabilistically in order to possibly reduce

the time, effort, and stress often associated with MAUT utility

assessment.
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In order to put the results of this paper in perspective,

it is useful to briefly describe the approach presented in

(White and Sage, 1980). This approach is comprised of a gen-

eral four step procedure for the riskless case:

1. Determine the set of alternatives that are nondomi-

nated with respect to the relation R.

2. Ask the DM (decision maker) to select the most pre-

ferred alternative from the nondominated set of alter-

natives.

3. If the DM can accomplish Step 2, remove the most

preferred alternative from the alternative set. If

the number of most preferred alternatives is less than

k, go to Step 1; otherwise, stop.

4. If the DM cannot accomplish Step 2 due to the fact

that the nondominated set is not small enough, then

aggregate some but not necessarily all of the value

scores. Typically, but not necessarily, several lower

level objectives are aggregated into a single, higher

level objective. Under proper assumptions, this

aggregation procedure strengthens the relation R and

hence will not increase the number of alternatives ifi

the nondominated set. Go to Step 1.

The potential usefulness and behavioral relevance of the

above approach are due to the facts that:

a) The most preferred alternative will always be in the

nondominated set as long as the utility function is

restricted to be isotone on V.
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b) Alternative selection is generally easier if made

from a subset of the alternative set than from the

entire alternative set.

c) Selection of the k most preferred alternatives may

not require explicit aggregation of all the value

scores, which is required by MAUT, and may, therefore, be

accomplished with relatively less time, effort,.and stress.

Of course, what constitutes a "small enough" nondominated set

so that Step 2 can be accomplished is highly dependent on the

DM, the contingency task structure, the scope or scale of the

perceptions needed to aggregate value scores, the time allotted

to the task, etc. We also remark that selection of the non-

dominated alternative set should sometimes be accomplished

along with a sensitivity study in order to insure that the DM

considers all possible candidates for the most preferred alter-

natives.

The aggregation procedure mentioned in Step 4 is accom-

plished by determining an aggregation function f: N - RL

consistent with the objectives hierarchy and the DM's desires

concerning aggregation of preferences. The aggregation function

typically aggregates the value scores of two or more objectives

into the value score of a single, higher level objective; i.e.,

L=l. See the automobile purchasing problem in (White and Sage,

1980) for an example.

For the case where each alternative is associated with a

single outcome with probability one, the alternative set and

the set of value score vectors can be viewed as equivalent and

6



hence the relation which describes preference on the value

score vector set is inherited by the alternative set. Thus,

for the certain case aggregating value scores to "strengthen"

the relation on the value score vector set equivalently

strengthens the relation on the alternative set. We will

give a formal definition to a "strengthened" relation and

discuss the implications of strengthening a relation beyond

tending to reduce the associated nondominated set in the next

section. When a one-to-one correspondence does not exist

between the alternative set and the value score vector set,

as is true for the problem considered here, the relations

describing preference on these sets are different. It therefore

does not necessarily follow that strengthening the relation

on the value score vector set by properly aggregating value

scores produces a stronger relation on the alternative set.

If strengthening the value score vector set relation does

strengthen the alternative set relation, then choice aiding for

the risky case can proceed in a manner analogous to the proce-

dure described in (White and Sage, 1980) and briefly out-

lined above.

In this paper we examine three relations on the alternative

set which are induced by the relation on the value score vector

set. The relations are associated with:

1. the expected value score vector

2. first order stochastic dominance

3. second order stochastic dominance

7



We show that for each of these three relations properly

aggregating value scores strengthens the relation on the

value score vector set which in turn induces a stronger

relation on the alternative set. These three relations are

considered in Sections 3, 4, and 5. Section 2 presents

several preliminary results, and Section 6 summarizes the

results and discusses their implications.

8..



2. Preliminary Results and Comments

Assume C is a (preference-or-indifference) relatc on. an arbitrary

set S, where a' s means s' is "weakly preferred" to s with

respect to &. The strict preference relatic induced by E is denoted

by Ep; i.e., s' & s iff s' E s and not s E s'. We do not require

E to be complete; therefore, two elements of S can be relatee by

any one of four possible relationships: s' E a and not s E s',

s Es' andnots' Es, s' E sands Es', and nots' &sand

not s 9 at (Ie., s and s' are incomparable).

Let E C be defined as: a' E s implies s' E' s, and

define Ep G Ep similarly. Thus, if a' is preferred to s with

respect to t, then s' is also preferred to s with respect to C',

assuming &!G'. We say &' is stronger than (more properly, at

least as strong as) E if ESE' since E' is able to express

preference between at least as many pairs of elements of S as

can C. Several characterizations of the relationship between

two relations C and E' on S, where C Q C', are given following

preliminary definitions.

Let S(C) be the set of all nondominated elements in S with

respect to E; i.e., let

S() = {S c S: there does not exist an s' c S such that
s' CpSi

Define &s as the set of all elements in S that are more preferred

to s e S with respect to E; i.e., C a = (s'cS: a' t s). Sim-

ilarly, let a C = (s'cS: sC s').

9

I-I
£I



LEMMA 1: (a) Let F C F'. Then Cs g &'s and sC s' for all

s £ S. (b) Assume t p 5C pt. Then, §(E;) (p).

Proof: (a) The fact that &s V F's and st ; se' for all S E S

follows directly from the definition of E Q F'.

(b) To show that §(&;)!G S§(Yp, we will show that

(p )c _ - (C )c where c stands for complement. Let s E §(Cp)C
pp p

Then, there is an s' E S such that s' F s which due to & 9EP
p p p

implies so& ;s. Thus, s E S(F; )c, and the proof is complete.

The first part of Lemma 1 states that for each element in a

set, strengthening the relation on the set allows more elements

to be identified as being weakly more preferred to the given

element. Analogously, for each element in the set, strengthening

a relation allows more elements to be identified as being weakly

less preferred to the given element. Equivalently, for each

element in the set, strengthening a relation reduces the number

of elements that are incomparable.

The second part of Lemma 1 shows that if the relations are

preference relations, then the nondominated set for the stronger

relation is a subset of the nondominated set for the weaker

relation. It has been shown (see, for example, (White and Sage,

1980)) that the most preferred element of a set is in its non-

dominated set if utility functions are assumed isotone. Thus,

strengthening the preference relation on a set of

alternatives may reduce the number of alternatives

which are candidates for being the most preferred

alternative. It is necessary, however, that the relation be a

preference relation for the second part of Lemma 1 to hold, as

10



the following example demonstrates.

EXAMPLE 1: We now show that if either and/or Q are not

preference relations, then 9 t ' may not imply that S(F'_

(F). Let S = (sI , s2 }C It 2 , where sI = (0,1) and s = (0,0).

Define:

(i) SIC s iff si > si p i=1,2,

(ii) s' V's iff si > s1.

Note that s' s implies s' 's, i.e. E S E', and that neither

relations are preference relat-ans, e.g. it is possible that

both s' & s and s t s'. Note also that sI = 9 (&)=S.

We remark that the only way a nondominated set can increase

after a relation has been strengthened is if:

1. There is an element s' in the nondominated set which is

strictly more preferred to an element s on the basis

of the weaker relation ard

2. Strengthening the relation causes the new preference

structure to be indifferent between s and s'.

Such a situation is unlikely to occur in most practical settings,

and therefore its possibility should be of little operational

concern. One exception to this statement is when an attribute(s)

is dropped from consideration in order to strengthen the

relation on the alternative set and there are ties in value scores

associated with the other attributes, as demonstrated by Example 1.

For the choicemaking problem under risk being considered in

this paper, the objective is to use a relation R on the set of

alternatives H to describe preference between alternatives in order

to determine the nondominated alternatives, or equivalently, in

11



order to determine the alternatives that are candidates for

being most preferred. If the nondominated set of alternatives

is too large for choice selection, then we wish to strengthen

R. Since R cannot be strengthened directly, we hope that

aggregating value scores will cause R to become more discrim-

inating. That is, if R(R) is the relation on H induced by

the relation R on V, then we hope that aggregating value

scores will strengthen R to R', i.e. RC R', which will in

turn induce a stronger relation on the alternative set, i.e.

R (R) G R (R').

Throughout the remainder of the paper, the aggregation of

value scores will be described functionally as f: RN -JRL,

where usually but not necessarily L < N. Note that f induces

a partial order on X: x' R'x iff f(x') > f(x). Throughout

the remainder of the paper f will be assumed to be at least

isotone, which is easily shown to imply R a R'.

12.



3. Expected Value Score Dominance

We now consider the case where alternatives are compared

on the basis of the expected value of their value score

vectors. It is shown that aggregating value scores using a

linear isotone aggregation function will strengthen this

relation on the alternative set. We also show that a linear,

strictly isotone aggregation will strengthen the associated

preference relation, thus guaranteeing no alternatives will

be added to the set of nondominated alternatives as the

preference relation is strengthened.

Assume that:

(i) 'R eI iff r vr'(v) > E vw(v)vCV vcV

(ii) w'Pe w iff wl R ew and not w R w'.

Letting f: RN + RL be the aggregation function, we define:

(i) w'R' iff E f(v) W'(v) > Z f(v)w(v)
vcV vcV

(ii) w'e'w iff w'R , and not wRI we.(i ) 'e e "

We refer to Re as the expected value score relation on H and

P as its associated preference relation. R' and P' are the
ee e
expected value score relation and preference relation, reaped-

tively, after a value score aggregation has been accomplished.

Recall that a function is affine if it is linear plus a

constant; i.e. f(v) - Av + b. Our main results for these

relations are as follows.

LEMIA 2. (a) If f is affine and isotone, then Re C Re.

13



(b) If f is affine and strictly isotone, then

f (e) S'fflPe ) •

Proof: (a) Assume w' Rew . By the isotonicity of f,

f[ z vw '(v)] _ f[ E vw(v)].
vcV viV

That f is affine then implies w' R '-
e

(b) That w' Pew implies w' P~w follows as above. The

result then holds due to Lemma lb. D
We remark that several decision aids for the single

decision node under risk case assume that the aggregation

function is linear, e.g. (Kelly, 1978). It is in general

necessary to assume that the aggregation function is affine,

as the following example demonstrates.

EXAMPLE 2. Let

v4 v2 ,= and v 0 75

I' (v)=.2, l'(v 2) = .2, t' (v 3 ) - .6

i (v 1) = .3, w(v2) = .3, w(v3) = .4

We see that

r vir'(v) 65

E vw(v) 6 0
vcV

Thus, w' Re W. Let f(v1 , v2) = max (vi, v2), which is isotone.

14



AThen,

I f(v) r'(v) - 085
V V

r f(v) W (v)- 090
VV

and hence v R' TI. Thus, R S R' does not in general imply
e

that Re GR; if f is isotone and nonlinear.

Consider also the case where the aggregation function is

f(v) - klv 1 + k2v2 + (1-kl-k2 ) V1v2 , the multilinear case.

A multilinear utility function is a necessary condition for

mutual utility independence; see (Keeney and Raiffa, 1976)

for details. Note that f(v 1 ) - k2, f(v2 ) = k1 , and f(v ) -

3(k1 + k2 )/16 + 9/16. It follows that

Z f(v)w'(v) 5 1 6 (kl +k2 ) + 27

veV

E f(v)r(v) 3 . (kI + k2 ) +
vcV

Observe that if (kI + k2) < 9/5, then w' R w; however, when

(k I + k2 ) > 9/5, w ReW'. Thus, when the sum k + k becomes

sufficiently large, RCR' does not imply R eR e' but in fact

implies that Re'S R e .

Interestingly, if the number of outcomes equals 2, i.e. M=2,

then the affine assumption in Lemma 2 can be delete..

COROLLARY 1: Assume M-2. Then, if the aggregation function
f: 5N  RL is isotone, ReG Re

e e-

Proof: Note that

z vW'(v) > Z vw(v)
vEV vcV

15



is equivalent to

v1 [W'(v l )-W(v 1 )]> v2 [W 1(v )-w(v 1].

Assume w' (v )-(v l)>O, which implies vI > v2 . Note that v >v2

implies f(v )>f(v 2 ), which in turn implies

f(v 1 ) [ 7 ' ( v l1 ) - wlv 1 I ] f l v 2 1 11 ' (v1)-wlv 1 1 ]

which is equivalent to the desired result. The w'(v )-I(v )=0

case is trivial; the w'(v 1 )-r(v1)<0 case proceeds as above.

The following example illustrates Lemma 2.

EXAMPLE 3. Assume there are five possible outcomes, four

attributes initially under consideration, and six available

alternatives, i.e. M=5, N=4, P-6. Table 1 presents assumed

data, and Figure 2a displays the resulting domination digraph

generated by the expected value scores listed in Table 2a.

Figure 2a indicates that alternative 3 is dominated by alter-

natives 1, 2, and 4 and that the nondominated set of alternatives

is (1, 2, 4, 5, 6).

Assume f(v) - Av, where

A =[l.1 .8 0

Thus, the aggregation function is linear and the t:*ade-off

weights for the three attributes 1, 2, and 3 are .1, .1, and

.8, respectively. Table 2b gives the expected value scores

after the aggregation and Figure 2b displays the resulting

digraph. Note that the aggregation has produced a nondominated

set which is not larger (it is in fact smaller) than the

nondominated set before the aggregation, which is in agreement

with Lemma 2a.

16



Outcome Number

1 2 3 4 5

1 10 5 5 0 5

Attribute 2 10 0 0 0 0
Number

3 3 3 10 0 3

4 5 5 5 0 10

(a) Value Scores for Each Outcome

Outcome Number

1 2 3 4 5

1 0.6 0.1 0.2 0.1 0.0

2 0.7 0.0 0.1 0.2 0.0

Alternative 3 0.3 0.1 0.0 0.4 0.2

Number 4 0.3 0.0 0.1 0.1 0.5

5 0.1 0.1 0.0 0.1 0.7

6 0.0 0.1 0.1 0.0 0.8

(b) Probabilities for Example 3.

TABLE 1. Data for Example 3.

17



Alternative Numbers

1 2 3 4 5 6

1 7.5 7.5 4.5 6.0 5.0 5.0

Attribute 2 6.0 7.0 3.0 3.0 1.0 0.0
Number

3 4.1 3.1 1.8 3.4 2.7 3.7

4 4.5 4.0 4.0 7.0 8.0 9.0

(a) Expected Value Scores Before the Aggregation

Al ernafive Numbers

1 2 3 4 5

Attribute 1-2-3 4.63 3.93 2.19 3.62 .2.76 3.46
Number 4 4.50 4.00 4.00 7.00 8.00 9.00

(b) Expected Value Scores After the Aggregation

TABLE 2. Expected Value Scores for Example 3.

18
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FIGURE 2:Domination Diagraphs Based on Expected Value Score
Dominance for Example 3: (a) Before Attribute Aggre-
gation, (b) After Attribute Aggregation.



We remark that the well-known mean-variance order (a

definition is given, for example, in (Fishburn, and

Vickson, 1978)) is a special case of the expected value

score relation. To see this, let Q-1 and N-2, interpret

x(Wm) as the return resulting from outcome m, and define

Vl[x(wm) =X(Wm)

- 2v 2 [x(wm)] = -(xWM) - Rp)x

if Ip (im) # 0, where p-mE X(W M) p( (). Alternatively, vl[x(wm)] =

x p In order for v = {vl,v 2 ) to be well-defined, we require

that n and I are nodeled to have the following property: if

m is such that v p(m) O 0, then wq (m) = 0 for all q c I, q p.

The relation R then becomes the mean-variance order.e

20



4. First-Order Stochastic Dominance

In this section, we investigate multiattribute, first-order

stochastic dominance as a means of defining a relation on the

alternative set H. We demonstrate that an isotone aggregation

of value scores on the value score vector set V strengthens the

relation on H. An additional condition is required to prove

that the preference relation on R is strengthened.

Consider the following definitions:

(i) K = {KSV: vcK, v' c V, and v' > v imply v' cK}

(ii) w' R I iff i'(K) > 7r(K) for all K c K

(iii) ' P1 w iff w' R1w and not n RI1t .

Observe that (iii) is equivalent to:

(iii)' ,l'P1 w iff wr'R 1iv and there is a KEK such that v'(K)

Y w (K).

We refer to R1 as the first order stochastic dominance

relation on H and P1 as its associated preference relation.

Observe that K represents the collection of all the so-called

increasing subsets of V with respect to the usual partial order

R on RN. As has been stated in (Fishburn and, Vickson, 1978),

R1 partially orders R; that is, R1 is both transitive and

antisymmetric.

Note that by extending the domain of the elements in H

to be the usual collection of Borel sets in RN, it is easy to

show w'R1 w is equivalent to:

fd,' fdw

S S
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for all increasing Borel sets S. As shown in (Lehmann, 1955)

and (Fishburn and Vickson, 1978), such a statement is equiva-

lent to the usual definition of first-order stochastic dominance:

E u(v)wl(v) > r u(v) W(v)vV V

for all ucU I , where U1 is the collection of all isotone scalar-

Nvalued functions on PN. Thus, if r' R 1 w, then alternative r'

can never produce a lower expected utility value than alternative

w, as long as we restrict attention to isotone utility functions.

We remark that a particularly desirable aspect of the

definition of the relations R1 and P1 is that K contains a

finite number of elements (in fact, at most E M ( ) Therefore,m=l m

a finite algorithm can easily be constructed that can test

for first-order stochastic dominance.
RN RL

Let f: N* R be the aggregation function, and let K' =

{K G V: vcK, v'EV, and f(v') > f(v) imply v'cK}. Define R? and

Pj exactly as R, and P1 were defined except substitute K' for K.

We now present the main result of this section.

LEMMA 3. If f is isotone, then R1 G RC .

Proof: A simple argument demonstrates that (' c K, which implies

R1 R1 directly from the definition. I
Determining conditions which imply that P1 P is a more

complicated task than determining conditions which imply that

R 1  RI and requires further definitions. Let K1 = {KcK:

Kc K}, K2 = KI, and define K!, i=l, 2, similarly with K'
Al 1

replacing K. Define K (n',w) ={K c K2  7'(fl Vin (K)}; observe

that if r' P1 n, then K (i',i)@ 0.
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LEMPIA 4: Assume:

(i) f is isotone

(ii) K' (I K (W',N) ' 0 for all n',w c ,

such that n'P W.

Then, f(P-)T (Pl.

Proof: Lemma 3 implies R1 R. It is easily shown that

K2' 1 (t', n) 0 0 insures that w'PIr implies wt'?P i.

Condition (ii) insures that this is true for all pairs in I

of interest and hence that P 1 - P1. The result then follows

from Lemma lb. El
We remark that condition (ii) in Lemma 4 is not very

meaningful operationally since K' becomes known only after

the value score aggregation. However, as we have discussed

earlier, the desired characteristic, i(P)C I(Pl), will

probably rarely be affected by whether or not condition (ii)

holds.

It is interesting to note that w' (K)=w(K) for all KcK 1

if ir'R 1W. This fact suggests that in trying to determine if

W'RIv, a simple initial check would be to see if i' (K) = i(K)

for all KcK 1. We observe that only half of the K1 sets need

to be checked since ff'(K) = r(K) iff wr(KC)= w(Yc).

We also remark that if all elements in the outcome set

are nondominated, then K =KI , and conversely. The discussion
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preliminary to the statement of Lemma 4 can then be used to

show that ff(PI)=H.

EXAMPLE 4. Consider the problem presented in Example 3. The

data presented in Table la generate the digraph of elements

in V in Figure 3a. The increasing sets in K associated with

this digraph which are of interest are: (11, (31, {51, {1,3),

{1,5), (3,5), {1,3,5), and {1,2,3,51. (We delete consideration

of {1,2,3,4,5) c K and * c K since n({1,2,3,4,5))= 1.0 and
w(,) = 0.0 for all w c H.) The probabilities associated

with each of these sets for each alternative are dis-

played in 'able 3a; Figure 3b presents the related digraph

of elements in H. As in Example 3, let f be linear and assume

value scores 1, 2, and 3 are traded-off with weights .1, .1, and .8,

respectively. The resulting digraph of elements in V is given

in Figure 4a. This digraph has the following increasing sets

of interest: {31, {5}, {3, 5}, f1, 3}, fl, 3, 5), and {1,2,3,51.

Notice that the total number of increasing sets has been reduced

by the aggregation. The digraph of elements in H associated with

the data presented in Table 3b is displayed in Figure 4b,

providing more preference information with respect to the alter-

natives than does the digraph in Figure 3b. L
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(a)

00 7r00

(b)

FIGURE 3. Domination Digraphs Associated with First-Order
Stochastic Dominance for Example 4 Before the Value
Score Aggregation (a) The Value Score Digraph
(b) The Alternative Digraph
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Increasing Alternative
Subset 1 2 3 4 5 6

{1} 0.6 0.7 0.3 0.3 0.1 0,0

{3) 0.2 0.1 0.0 0.1 0.0 0.1

{51 0.0 0.0 0.2 0.5 0.7 0.8

(1, 31 0.8 0.8 0.3 0.4 0.1 0.1
{1, 51 0.6 0.7 0.5 0.8 0.8 0.8
{3, 51 0.2 0.1 0.2 0.6 0.7 0.9

1, 3, 51 0.8 0.8 0.5 0.9 0.8 0.9
(1, 2, 3, 5} 0.9 0.8 0.6 0.9 0.9 1.0

(a)

{31 0.2 0.1 0.0 0.1 0.0 0.1
(51 0.0 0.0 0.2 0.5 0.7 0.8
{3, 51 0.2 0.1 0.2 0.5 0.7 0.8
(1, 31 0.8 0.8 0.3 0.4 0.1 0.1
U1, 3, 5} 0.8 0.8 0.5 0.9 0.8 0.9
(1, 2, 3, 51 0.9 0.8 0.6 0.9 0.9 0.0

(b)

TABLE 3: Probabilities of the Increasing Sets for Each Altern~tive,
i.e. P(vcK Is) for each X c K and wcH (a) Before and
(b) After the Value Score Aqgregation in Example 4.
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(a)

3 W

(b)

11

FIGURE 4 : DOinination Digraphs Associated with rirst Order stochastic
Dominance for Example 4 after the Value Score Aggregation(a) The Value Score Digraph (b) The Alternative Digraph.
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It is of interest to give conditions that relate the

two orders Re and R1. Let the function IK: V ( (0,1) be

such that IK (v) = 1 if v e K and IK(v) - 0 if v K. Let

I = (IKKK . Thus, I(v) is a y-vector if K contains y sub-

sets of V which identifies the increasing sets containing

v. It is easy to demonstrate that w' R 7 is equivalent to

rv I(v) WI'(v) > rv Iv) w(v)

It is straightforward to show that the following results hold

using the same procedure as was used in the proof of Lemma 2.

LEMMA 5. (a) Assume there is an isotone, affine function a

such that c[I(v)] = v for all v c V. Then RICR e -

(b) Assume there is an isotone, affine function B

such that O(v) = I(v) for all v _ V. Then Re! RI .

We now illustrate Lemma 5 with the following example.

EXAMPLE 5. Consider the data presented in Tables la and 3a

for Examples 3 and 4, respectively. With reference to Table 3a,

note that I(v )= col {1,0,0,1,1,0,1,1), in that 1 (l), 1 j {3,

1 / (51, 1 £ {1,31, and so forth. The collection of column

vectors {I(v ),..., I(v } is then:

1 0 0 0 C
0 0 1 0 0
0 0 0 0 1

(r(vl),..., 1(v 5 ) = 1 0 1 0 0

1 0 0 0 1

0 0 1 0 1

1 0 1 0 1

1 1 1 0 1
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In order to illustrate Lemma 5a, we seek an isotone, affine

function a such that

[v ,.., v 5 [I(v 1),.., I(v 5)]

where from Table la,

F10 5 5 0 5
[v,.., v51 10 0 0 0 0

3 3 10 0 i3
5 5 5 0 1

Note that since v= cI(v 4), a is required to be linear; i.e.

is a 4 x 8 matrix. We can now omit v4 and I(v4) from

further consideration. Standard algebraic procedures show that

0 0 0 0 0 0 5

10 0 0 0 0 0 0 0

L0 7 0 0 0 0 0 3

0 5 0 0 0 0

Clearly, a is isotone and hence from Lemma 5a, R1Q Re , which is

verified by Figures 2a and 3b. Since the aggregation function

used was linear in both Examples 3 and 4, it is straightforward

to show that RlgR' , using Lemma 5a and the same a as above.

Straightforward algebraic manipulation shows that there

exists a unique 8 x 4 matrix B such that Ov= I(v) for all v c V,
* wherewe 

0 1/10 0 0

-3/35 3/70 1/7 0

-1/5 1/10 0 1/5

-3/35 1/7 1/7 0

B -1/5 1/5 0 1/5
-2/7 1/7 1/7 1/5

-2/7 17/70 1/7 1/5

L1/5 -1/10 0 0
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Note, however, that 0 is not isotone and thus it does not

necessarily follow from Lemma 5b that R e R In fact, we

observe from Figures 2a and 3b that Re_ R1 does not hold.
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5. Second-Order Stochastic Dominance

In this section, we examine multiattribute second-order

stochastic dominance as a means of ordering the set of alter-

natives. Using necessary and sufficient conditions for

multivariable second order stochastic dominance due to

Fishburn and Vickson (1978), we show that a linear,

isotone aggregation of value scores on the set V induces a

strengthened relation on the alternative set H. Here we will

not define a strict preference relation on R, notinq that a

stronger relation on H will usually produce a nondominated set

of alternatives after a value score aggregation which is no

larger than the nondominated set of alternatives before the

aggregation.

Define U2 as the collection of all isotone, concave

functions; i.e., ucU 1 and u[lr + (1-X)r'] I Xu(r) + (1-X)

u(r') for all 0 < X < I for any r, r' m N . The concavity of a

utility function is the functional representation of global

risk aversion, describing the preference structure of a decision-

maker who will never invest in an actuarially fair prospect.

Consider the following definition:

rR 2 W iff E u(v)w'(v) > E u(v)w(v)
vEV vEV

for all u c U2.

We refer to R2 as the second order stochastic dominance relation on n.

Thus, if we know the decisionmaker is risk averse, then

w'R2 w implies that alternative w' is at least as good as

alternative (with respect to the expected utility criterion).

Clearly, it follows directly from the definitions that R1 2

and that R2 is a partial order..
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Fishburn and Vickson (1978) have presented a slightly less

general version of the following necessary and sufficient

conditions for w'R2w: there exists a feasible solution to the

set of a linear equalities and inequalities:

(i) > 0 for all i, j=l,..., M

M
(ii) r dij 1 for alli= 1,..., M

J=l i

such that Y'(v) 0

M
(iii) w(vJ) W ir'(v )d i for all j=l,..., Mi=l 1

M i
(jv) z di vn < for all i=l,..., M4= Jn- n

such that '(v i ) i 0 and all n=l,..., N,

where vj is the nth scalar entry of vj c V;

i.e. v j = vJ,-, vJ).

Interpretations of the solution {dijI to the above can be found

in (Fishburn and Vickson, 1978).

Let f: * RL be the aggregation function, and define

R as R2 was defined, except replace U2 with U2, where

U' = {u: u is isotone on f(RN ))

UL = {u C Uj: u is concave on f(R )I.

We now present conditions on f which insure R2 Q R2".

LEMMA . Assume f: R - IRL satisfies the following conditions:

(1) f (vi) = b where 0n~ where bn -0

for all n = 1,..., N and t = 1,..., L

(2) if v I v, then f(v ) f(vJ).

Then, R2  Rj.
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Proof. We wish to show that if (iv) holds, then

M4j
Sdij ft (vJ) -f1 (v

i-l

for all i - 1,..., M such that w' (v ) j 0 and all t - 1,..., L.

(2) implies that the number of vi such that I' (vi) ' 0 does not

change after the aggregation is performed. (1) can be used to

easily show that (iv) implies the above inequality.

EXAMPLE 6. Again consider the problem presented in Example 3,

using second-order stochastic dominance as the method of generating

a partial order on H. Figure 5 is the dominance digraph of

elements in H before the value score aggregaticn. Figure 2b is, coincidentally,

the dominance digraph of elements in R after the attribute

aggregation. Observe that the assumption of risk aversion has

caused the relationship RIC R2 to be strict both before the

aggregation (compare Figures 3b and 5) and after the aggregation

(compare Figures 2b and 4b).

It seems reasonable to pose the following computationally

attractive conjecture: assume, for each n=l,..., N, that w'

stochastically dominates w in second order based on the outcome
1 '

set (vn,..., v 1; that is, assume for each n=l,...,, N, thatn n

(i) through (iii) hold and

(iv)' i E1 i vd ij <_ n

for all i=l,..., M such that w'(v i ) M 0. Then wr stochastically
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i 3

FIGURE 5. The Digraph for Example 6 Before the Value Score
Aggregation
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dominates w in second order based on the outcome set {v 1i...,

}; that is, (i) through (iv) hold.

The computational attractiveness of the above conjecture

is due to the fact that there exist computationally simple

checks for univariate second order stochastic dominance, c.f.

(Fishburn and Vickson, 1978). Unfortunately, the above

conjecture is false in general since the set of all Idi I

satisfying (iv)' for n=k and ( .v)l for n=k', k# k', may be

null. It has been shown that the above statement and its

converse hold, c.f. Theorem 2.11 (Fishburn and Vickson, 1978),

under suitable independence assumptions. These independence

assumptions, however, do not imply that the sufficient con-

ditions for R2G R1 presented in Lemma 6 can be relaxed.

It is important to observe that the expected value score

relation and the stochastic dominance relations differ

fundamentally in their interpretation of a complete value

score aggregation, i.e. for the case where the aggregation

function f: IRN -R 1 (the L=I case). In this case, RV is a

linear order and R and R1 may only be partial orders. R'

essentially treats f(v) as a utility function, i.e., u(x) =

f(v (x)] , whereas R and R2 assume there exists a still

unassessed function U which when composed with f(v) produces

the desired utility function, i.e., u(x) = U[f[v(x)11. A

discussion of the usefulness of assuming the existence of such

a function U, especially for modeling risk, can be found in

(Bodily, 1980). An example is now presented to illuminate the
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fact that if there is a single attribute, presumably associated

with the highest level objective and a complete value score

aggregation, then the expected value score relation is linearly

ordered but the stochastic dominance relations may not be.

EXAMPLE 7. Consider the problem presented in Example 3, and

let the aggregation function f(v) = Av, where

A = [.05 .05 .40 .501.

Thus, f linearly aggregates the value scores into a single,

scalar value score with weights .05, .05, .40, and .50.

Equivalently, f linearly aggregates the value scores for attri-

butes 1-2-3 and 4 with a weight of .5 each, c.f. Table 2b.

Figure 6 presents the relevant digraphs. Note that R1  Re,

in agreement with Example 5, and that R I 2"
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6. Conelusions

In this paper, we have examined a multiattribute, single

decision node decision making problem under risk. The intent

has been to investigate the extension of an approach to decision

aiding under certainty presented in (White and Sage, 1980)

to the case where outcomes are described probabilistically. We

have seen that the risky case differs fundamentally from the

certain case in that the relation on the alternative set is

induced, at least in the three relations studied, by the relation

on the value score vector set rather than being essentially

equivalent to it. This fact has lead us to examine whether or

not additional preference information supplied by the decision-

maker in the form of value score aggregations would be passed on

to the relation on the alternative set in the form of a stronger

partial ordering. Under suitable conditions for the three induced

partial orders examined, this "preference transmittal" has

been shown to exist.

We observe that the value score partial order is significantly

less computationally demanding than the partial orders generated by

the stochastic dominance notions. Use of the valu- score relation

requires determining and comparing the weighted sum (f P N-vectors.

The first-order stochastic dominance relation requires comparing P

vectors having up to EM  (M ) scalar elements, where each scalarm=l m
element is the sum of probabilities and where

m=lM ) represents the maximum number of elements in K. The second-
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order stochastic dominance relation requires determining the

feasibility of P(P-l) linear programs, each having up to

M(M+N+2) decision variables (2M of which are artificial variables)

and up to M(N+2) side constraints. Of course, these computa-

tional requirements may decrease if Lemma 5 can be used and/or

if the fact that Ra R 2 is used. Clearly, the second-order

stochastic dominance relation can be substantially more compu-

tationally demanding than either of the other two relations.

The computational effort required to determine the dominance

digraph for the first-order stochastic dominance relation and the

value score relation is similar, provided that N and the number

of increasing sets in K do not differ significantly and that K

has been determined. Determining all of the increasing subsets

(an algorithm for determing K is given in (White and Sage, 1980)),

however, is significantly more computationally involved then the

task of determining the domination digraph generated by the

first-order stochastic dominance relation once K has been deter-

mined.

We remark that if is possible to model the mean variance

order in the context of the expected value score relation with-

out requiring a and H to satisfy the property: i (n.) # 0 impliesp

M (m) = 0 for all q c 9, q pf p for all m (see Section 3). To seeq

this, let the value score vector depend on both the alternative

and outcome; that is let vn = vn [x(w), pl. Assume Q= and N=2,

and interpret x(wm) to be the return resulting from outcome m.

We now define:
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V1 [X(wm), p]= X(W)

v2 [x(Wm), p]= _(X(wm) - )2

Alternatively, define

V1[x(m ), p]= ;Fp

The resulting relation Re is then the mean-variance order. It

is straightforward to show that the results in Lemmas 2 and 3

easily generalize to the case where the value score vector can

depend on both alternative and outcome. Extending the results

in Sections 4 and 5 so that the value score vector can depend

on the selected alternative is not so straightforward (e.g.

note the obvious difficulties in defining RI) and is a topic

of future research.
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UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science
The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment

of approximately 1.400 students with a graduate enrollment of approximately 600. There are 125 faculty
members, a majority of whom conduct research in addition to teaching.

Research is an integral part of the educational program and interests parallel academic specialties. These
range from the classical engineering departments of Chemical, Civil, Electrical, and Mechanical and
Aerospace to departments of Biomedical Engineering, Engineering Science and Systems, Materiels
Science, Nuclear Engineering and Engineering Physics, and Applied Mathematics and Computer Science.
In addition to these departments, there are interdepartmental groups in the areas of Automatic Controls and
Applied Mechanics. All departments offer the doctorate; the Biomedical and Materials Science
Departments grant only graduate degrees.

The School of Engineering and Applied Science is an integral part of the University (approximately 1.530
full-time faculty with a total enrollment of about 16,000 full.time students), which also has professional
schools of Architecture, Law, Medicine, Commerce, Business Administration, and Education. In addition,
the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others
relevant to the engineering research program. This University community provides opportunities for[ interdisciplinary work in pursuit of the basic goals of education, research, and public service.
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